US 8,196,195 B2

5

may be a set of one or more processors, or may be a multi-
processor core, depending on the particular implementation.
Further, processor unit 204 may be implemented using one or
more heterogeneous processor systems in which a main pro-
cessor is present with secondary processors on a single chip.
As another illustrative example, processor unit 204 may be a
symmetric multi-processor system containing multiple pro-
cessors of the same type.

Memory 206 and persistent storage 208 are examples of
storage devices. A storage device is any piece of hardware that
is capable of storing information either on a temporary basis
and/or a permanent basis. Memory 206, in these examples,
may be, for example, a random access memory or any other
suitable volatile or non-volatile storage device. Persistent
storage 208 may take various forms depending on the par-
ticular implementation. For example, persistent storage 208
may contain one or more components or devices. For
example, persistent storage 208 may be a hard drive, a flash
memory, a rewritable optical disk, a rewritable magnetic tape,
or some combination of the above. The media used by per-
sistent storage 208 also may be removable. For example, a
removable hard drive may be used for persistent storage 208.

Communications unit 210, in these examples, provides for
communications with other data processing systems or
devices. In these examples, communications unit 210 is a
network interface card. Communications unit 210 may pro-
vide communications through the use of either or both physi-
cal and wireless communications links.

Input/output unit 212 allows for input and output of data
with other devices that may be connected to data processing
system 200. For example, input/output unit 212 may provide
a connection for user input through a keyboard and mouse.
Further, input/output unit 212 may send output to a printer.
Display 214 provides a mechanism to display information to
a user.

Instructions for the operating system and applications or
programs are located on persistent storage 208. These instruc-
tions may be loaded into memory 206 for execution by pro-
cessor unit 204. The processes of the different embodiments
may be performed by processor unit 204 using computer
implemented instructions, which may be located in a
memory, such as memory 206. These instructions are referred
to as program code, computer-usable program code, or com-
puter-readable program code that may be read and executed
by a processor in processor unit 204. The program code in the
different embodiments may be embodied on different physi-
cal or tangible computer-readable media, such as memory
206 or persistent storage 208.

Program code 216 is located in a functional form on com-
puter-readable media 218 that is selectively removable and
may be loaded onto, or transferred to, data processing system
200 for execution by processor unit 204. Program code 216
and computer-readable media 218 form computer program
product 220 in these examples. In one example, computer-
readable media 218 may be in a tangible form, such as, for
example, an optical or magnetic disc that is inserted or placed
into a drive or other device that is part of persistent storage
208 for transfer onto a storage device, such as ahard drive that
is part of persistent storage 208. In a tangible form, computer-
readable media 218 also may take the form of a persistent
storage, such as ahard drive, a thumb drive, or a flash memory
that is connected to data processing system 200. The tangible
form of computer-readable media 218 is also referred to as
computer recordable storage media. In some instances, com-
puter readable media 218 may not be removable.

Alternatively, program code 216 may be transferred to data
processing system 200 from computer-readable media 218

20

25

35

40

45

55

65

6

through a communications link to communications unit 210
and/or through a connection to input/output unit 212. The
communications link and/or the connection may be physical
or wireless in the illustrative examples. The computer-read-
able media also may take the form of non-tangible media,
such as communications links or wireless transmissions con-
taining the program code.

The different components illustrated for data processing
system 200 are not meant to provide architectural limitations
to the manner in which different embodiments may be imple-
mented. The different illustrative embodiments may be
implemented in a data processing system including compo-
nents in addition to, or in place of, those illustrated for data
processing system 200. Other components shown in FIG. 2
can be varied from the illustrative examples shown. As one
example, a storage device in data processing system 200 is
any hardware apparatus that may store data. Memory 206,
persistent storage 208, and computer-readable media 218 are
examples of storage devices in a tangible form.

In another example, a bus system may be used to imple-
ment communications fabric 202 and may be comprised of
one or more buses, such as a system bus or an input/output
bus. Of course, the bus system may be implemented using any
suitable type of architecture that provides for a transfer of data
between different components or devices attached to the bus
system. Additionally, a communications unit may include one
or more devices used to transmit and receive data, such as a
modem or a network adapter. Further, a memory may be, for
example, memory 206 or a cache such as found in an interface
and memory controller hub that may be present in communi-
cations fabric 202.

With reference to FIG. 3, a block diagram of components
of a privilege manager in accordance with illustrative
embodiments is shown. A portion of system 200 of FIG. 2 is
shown with a number of components within privilege man-
ager 302, all within memory 206 of system 200 of FIG. 2.

Privilege manager 302 is comprised of components includ-
ing roles 304, privilege templates 306, transform utility 308
and editor 310. Privilege manager 302 provides a convenient
package of services for managing authorization policies
using the definitions of roles 304 and privilege templates 306.
Transform utility 308 manages the transition from the plat-
form independent form of definitions in roles 304 and privi-
lege templates 306 into platform specific forms suitable for
use on the target platforms. Editor 310 provides a capability to
create and modify the source definitions of roles 304 and
privilege templates 306. The source form of the definitions
may be stored text or non-text, proprietary or non-proprietary
form including storage in a database management system,
extensible markup language (XML), or extensible access
control markup language (XACML) form of maintaining the
policy representation.

The source definitions provided in roles 304 and privilege
templates 306 provide a very low-level, granular capability to
define, and thus manage, the specification and conveyance of
privileges to users or components.

With reference to FIG. 4, a block diagram of a role-based
privilege management system is shown, in accordance with
illustrative embodiments. Role-based privilege management
system 400 comprises a number of components including an
editor 402, privilege templates 404, roles 406, transform util-
ity 408, target environments 410, transformation request 412,
and a set of role-based privileges 414. In various embodi-
ments, privilege templates 404, roles 406, and target environ-
ments 410 may each refer to a set of elements within. For
example, roles 406 comprises a set or roles containing one or
more members of the set, the members being specific to the



